Компонент ОПОП <u>21.03.01 Нефтегазовое дело</u> наименование ОПОП

<u>Б1.В. 01.11</u> шифр дисциплины

РАБОЧАЯ ПРОГРАММА

Дисциплины (модуля)	Гидравлика и нефтегазовая гидромеханика			
Разработчик (и): <u>Кузнецов А.В.</u> _{ФИО} доцент	Утверждено на заседании морского нефтегазе наименование ка протокол № от	ового дела		
ученая степень, звание	Заведующий кафедрой	Васеха М.В.		

Пояснительная записка

Объем дисциплины <u>8</u> з.е. **1. Результаты обучения по дисциплине (модулю)**, соотнесенные с индикаторами достижения компетенций, установленными образовательной программой

Компетенции	Индикаторы	Результаты обучения по дисциплине		
	достижения	(модулю)		
	компетенций			
ПК-1	ИД-1пк-1	Знать:		
Способен	Знает основные	- основные понятия механики сплошной		
осуществлять	производственные	среды;		
оперативный	процессы,	- законы равновесия и движения		
контроль потоков	представляющие	жидкостей и газов;		
углеводородного	единую цепочку	- способы задания движения жидкостей		
сырья и режимов	нефтегазовых	и газов и характеристики потока;		
работы	технологий.	- основные расчетные формулы		
технологических	ИД-2пк-1	покоящихся жидкостей, газов и		
объектов и	Умеет при	характеристики потока;		
управление ими в	взаимодействии с	- способы измерения давления, скорости		
границах зоны	сервисными	и расхода жидкости и газа;		
обслуживания	компаниями и	- методы теории подобия и		
организации	специалистами	моделирования явлений в		
нефтегазовой отрасти	технических служб	гидромеханике;		
углеводородного	корректировать	- методы гидравлического расчета		
сырья и режимов	технологические	трубопроводов.		
работы	процессы с учетом	Уметь:		
технологических	реальной ситуации.	- выполнять расчет сил		
объектов и	ИД-3пк-1	гидростатического и динамического		
управление ими в	Владеет навыками	давления на плоские и криволинейные		
границах зоны обслуживания	руководства	поверхности;		
организации	производственными	- выполнять расчет характеристик		
нефтегазовой	процессами с	потока;		
отрасли.	применением	- определять величины различных		
отрасли.	современного	гидравлических сопротивлений;		
	оборудования и	- определять параметры истечения		
	материалов.	жидкости через отверстия и насадки при		
ПК-2	ИД-1пк-2	постоянном и переменном напорах		
Способен	Знает	жидкости;		
осуществлять	технологические	- осуществлять гидравлический расчет		
организационно-	процессы в области	трубопроводов;		
техническое	нефтегазового дела	- применять методы теории подобия и		
сопровождение	для организации	моделирования явлений в		
добычи	работы коллектива	гидромеханике;		
углеводородного	исполнителей.	- анализировать результаты расчета и		
сырья.	ИД-2пк-2	эксперимента.		
tapan.	Умеет принимать	Владеть:		
	исполнительские	- навыками выполнения гидравлических		
	решения при разбросе	расчетов;		
	мнений и конфликте	- навыками измерения характеристик		
	интересов,	потока;		
	определить порядок	- правилами выполнения и чтения		
	определить порядок	правилами выполнения и этспия		

выполнения работ. ИД-3 пк-2 Владеет навыками оперативного	гидравлических схем; - навыками выбора измерительного и испытательного оборудования при эксплуатации и ремонте гидравлических		
сопровождения технологических процессов в области нефтегазового дела.	систем; - навыками соблюдения техники безопасности и охраны труда при эксплуатации гидравлических систем.		

2. Содержание дисциплины (модуля)

Тема 1. Основы механики сплошной среды.

Гипотеза сплошности. Методы описания движения сплошной среды. Локальная и субстанциональная производная. Скалярные и векторные поля. Силы и напряжения в сплошной среде. Тензор напряжений. Гидравлика в нефтегазовом деле.

Тема 2. Гидростатика.

Основные законы гидравлики. Интегральные и дифференциальные уравнения сплошной среды. Система уравнений движения сплошной среды.

Тема 2. Математическая модель идеальной жидкости.

Математическая модель идеальной несжимаемой жидкости. Вязкая жидкость. Тензор напряжений в вязкой жидкости. Уравнения движения вязкой жидкости. Математическая модель вязкой несжимаемой жидкости. Ньютоновские, вязко-пластичные и степенные жидкости.

Тема 3. Гидромеханика.

Уравнения равновесия жидкости и газа. Равновесие жидкости в поле сил тяжести. Относительный покой жидкости. Статистическое давление жидкости на твердые поверхности. Буровой раствор.

Тема 4. Гидродинамика.

Скорость деформации сплошной среды. Теорема Гельмгольца. Тензор скоростей деформации. Циркуляция скорости. Течение идеальной жидкости. Уравнение Эйлера в форме Грамеко-Лемба. Интеграл Бернулли.

Тема 5. Режимы течения.

Турбулентное и ламинарное течение жидкости в трубах. Опыты Рейнольдса. Осреднение характеристик турбулентного течения. Экспериментальные исследования коэффициента гидравлического сопротивления.

Тема 6. Трубопроводы простые.

Гидравлический расчет трубопроводов. Уравнение Бернулли для потока вязкой жидкости. Виды потерь напора. Расчет простых трубопроводов.

Тема 7. Течение газа.

Одномерные течения газа. Скорость звука. Закон сохранения энергии. Число Маха. Связь между площадью живого сечения трубки тока и скорость течения.

Тема 8. Двухфазное течение.

Двухфазное течение в трубах и кольцевом пространстве. Уравнения законов сохранения. Уравнения законов сохранения. Уравнения движения двухфазной смеси в трубах и кольцевом пространстве. Режимы течения. Свободный дебит газоконденсатной скважины.

Тема 9. Движение флюида в пласте.

Основные определения и понятия фильтрации жидкости и газов. Опыт и закон Дарси. Особенности движения флюидов в природных пластах. Фильтрационно-емкостные свойства пористых сред. Коэффициенты пористости и просветлённости. Удельная поверхность. Проницаемость. Границы применимости закона Дарси. Анализ и интерпретация экспериментальных данных.

3. Перечень учебно-методического обеспечения дисциплины (модуля)

- мультимедийные презентационные материалы по дисциплине (модулю) представлены в электронном курсе в ЭИОС МАУ;
- методические указания к выполнению практических работ представлены в электронном курсе в ЭИОС МАУ;
- методические материалы для обучающихся по освоению дисциплины (модуля) представлены на официальном сайте МАУ в разделе «<u>Информация по образовательным</u> программам, в том числе адаптированным».

4. Фонд оценочных средств по дисциплине (модулю)

Является отдельным компонентом образовательной программы, разработан в форме отдельного документа, представлен на официальном сайте МАУ в разделе «Информация по образовательным программам, в том числе адаптированным». ФОС включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины (модуля);
 - задания текущего контроля;
 - задания промежуточной аттестации;
 - задания внутренней оценки качества образования.
- **5. Перечень основной и дополнительной учебной литературы** (печатные издания, электронные учебные издания и (или) ресурсы электронно-библиотечных систем)

Основная литература:

- 1. Артемьева, Т.В. Гидравлика, гидромашины и гидропривод / Т.В. Артемьева. Академия, 2013.
 - 2. Штеренлихт, Д.В. Гидравлика / Д.В. Штеренлихт. М.: Колос, 2014.
- 3. Штеренлихт, Д.В. Гидравлика. [Электронный ресурс]: Учебники Электрон. Дан. СПб.: Лань, 2015. 656 с. Режим доступа: http://e.lanbook.com/book/64346.

Дополнительная литература:

- 4. Башта, Т.М. Гидравлика, гидромашины и гидроприводы. /Т.М. Башта. Издательский дом Альянс, 2010.
- 5. Осипов, П.Е. Гидравлика, гидромашины и гидроприводы. / П.Е. Осипов. М.:Машиностроение, 1982.

6. Профессиональные базы данных и информационные справочные системы

- 1. Электронный научный журнал «Нефтегазовое дело». http://ogbus.ru/.
- 2. Научно-технический журнал "Оборудование и технологии для нефтегазового дела" https://vniioeng.mcn.ru/inform/oborud/.
- 3. Информационно-издательский центр по геологии и недропользованию Министерства природных ресурсов и экологии Российской Федерации ООО "ГЕОИНФОРММАРК"- http://www.geoinform.ru
 - 4. Мировая цифровая библиотека: http://wdl.org/ru
 - 5. Электронно-библиотечная система «IPR BOOKS» http://www.iprbookshop.ru
 - 6. Научная электронная библиотека «eLIBRARY»: https://elibrary.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

1. Операционная система Microsft Windows 7. Программные продукты Microsoft (подписка на образовательные лицензии, сетевые версии), участие в академической программе Microsoft Azure Dev Tools for Teaching. Идентификаторы подписок (Azure Dev Tools for Teaching Subscription ID): Институт арктических технологий – ICM-167652, счет-

фактура NoIM22116 от 12.11.2018, счет No9552401799 от 10.12.2018

- 2. Офисный пакет MicrosoftOffice 2010 RussianAcademicOPEN, лицензия No 47233444 от 30.07.2010 (договор 32/285 от 27.07. 2010)
- 3. Wolfram Mathematica Professional (Network Server, Network Increment) 8.x/9.x (сетеваяверсия), номерлицензии L3477-6735 от 20.11.2012 г. (договор 26/32/277 от 15.11.2012 г.)

8. Обеспечение освоения дисциплины лиц с инвалидностью и ОВЗ

Обучающиеся из числа инвалидов и лиц с OB3 обеспечиваются печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

- **9. Материально-техническое обеспечение дисциплины (модуля)** представлено в приложении к ОПОП «Материально-технические условия реализации образовательной программы» и включает:
- учебные аудитории для проведения учебных занятий, предусмотренных программой бакалавриата, оснащенные оборудованием и техническими средствами обучения;
- помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде МАУ;

Допускается замена оборудования его виртуальными аналогами.

10. Распределение трудоемкости по видам учебной деятельности

Таблица 1 - Распределение трудоемкости

	Очная формам обучения		Очно-заочная формам обучения			
Вид учебной деятельности	2 курс/ 3 семестр	2 курс/ 4 семестр	Всего часов	2 курс/ 3 семестр	2 курс/ 4 семестр	Всего часов
Лекции	20	20	40	14	14	28
Практические занятия	28	28	56	14	14	28
Подготовка к промежуточной аттестации	-	36	36	-	36	36
Самостоятельная работа	96	60	156	116	80	196
Всего часов по дисциплине / из них в форме практической подготовки	144	144	288	144	144	288
	36	36	72	36	36	72
Формы промежуточной аттестации и текущего контроля						
Экзамен	-	1	1	-	1	1
Зачет/зачет с оценкой	1 (3a)	-	1 (3a)	1 (3a)	-	1 (3a)
Контрольная работа	1	1	2	1	1	2

Перечень практических занятий по формам обучения

No	T					
п\п	Темы практических занятий					
1						
	Очная форма					
1	Жидкости и их физические свойства.					
2	Определение гидростатического давления по основному уравнению гидростатики.					
3	Задачи с использованием основных законов гидростатики: закона Паскаля, закона					
	Архимеда, закона Гука.					
4	Определение сил давления жидкости на плоские поверхности твердого тела.					
5	Определение сил давления жидкости на криволинейные поверхности твердого тела.					
6	Гидродинамические расчеты с использованием уравнение Бернулли.					
7	Определение потерь напора на преодоление гидравлических сопротивлений.					
8	Расчет трубопроводов: определения расхода, давления, диаметра.					
9	Определение скорости и расхода при истечении жидкости через отверстия и					
	насадки различных типов.					
10	Движение в пористых средах.					
	Очно-зочная форма					
1	Жидкости и их физические свойства.					
2	Определение гидростатического давления по основному уравнению гидростатики.					
3	Задачи с использованием основных законов гидростатики: закона Паскаля, закона					
	Архимеда, закона Гука.					
4	Определение сил давления жидкости на плоские поверхности твердого тела.					
5	Определение сил давления жидкости на криволинейные поверхности твердого тела.					
6	Гидродинамические расчеты с использованием уравнение Бернулли.					
7	Определение потерь напора на преодоление гидравлических сопротивлений.					
8	Расчет трубопроводов: определения расхода, давления, диаметра.					
9	Определение скорости и расхода при истечении жидкости через отверстия и					
	насадки различных типов.					
10	Движение в пористых средах.					